Orthogonality preserving mappings on inner product C* -modules
Authors
Abstract:
Suppose that A is a C^*-algebra. We consider the class of A-linear mappins between two inner product A-modules such that for each two orthogonal vectors in the domain space their values are orthogonal in the target space. In this paper, we intend to determine A-linear mappings that preserve orthogonality. For this purpose, suppose that E and F are two inner product A-modules and A+ is the set of all positive elements of A. We show that an A-linear mapping T:E→F preserves orthogonality if and only if there exists a∈A+ such that ⟨Tx,Ty⟩= a^2 ⟨x,y⟩ for each x,y∈E. At first recall that two vector x,y∈E are ordinary orthogonal if ⟨x,y⟩=0 and then we introduce the notion of orthogonality in an inner product A-module in three ways and show that an A-linear mapping between two inner product A-modules preserves the ordinary orthogonality if and only if it preserves each one of the new orthogonality.
similar resources
- Inner Product Preserving Mappings
A mapping f : M → N between Hilbert C∗-modules approximately preserves the inner product if ‖〈f(x), f(y)〉 − 〈x, y〉‖ ≤ φ(x, y), for an appropriate control function φ(x, y) and all x, y ∈ M. In this paper, we extend some results concerning the stability of the orthogonality equation to the framework of Hilbert C∗modules on more general restricted domains. In particular, we investigate some asympt...
full textInner Product Spaces and Orthogonality
1 Dot product of R The inner product or dot product of R is a function 〈 , 〉 defined by 〈u,v〉 = a1b1 + a2b2 + · · ·+ anbn for u = [a1, a2, . . . , an] , v = [b1, b2, . . . , bn] ∈ R. The inner product 〈 , 〉 satisfies the following properties: (1) Linearity: 〈au + bv,w〉 = a〈u,w〉+ b〈v,w〉. (2) Symmetric Property: 〈u,v〉 = 〈v,u〉. (3) Positive Definite Property: For any u ∈ V , 〈u,u〉 ≥ 0; and 〈u,u〉 =...
full text$C^{*}$-semi-inner product spaces
In this paper, we introduce a generalization of Hilbert $C^*$-modules which are pre-Finsler modules, namely, $C^{*}$-semi-inner product spaces. Some properties and results of such spaces are investigated, specially the orthogonality in these spaces will be considered. We then study bounded linear operators on $C^{*}$-semi-inner product spaces.
full textOrthogonality Preserving Transformations on Indefinite Inner Product Spaces: Generalization of Uhlhorn’s Version of Wigner’s Theorem
We present an analogue of Uhlhorn’s version of Wigner’s theorem on symmetry transformations for the case of indefinite inner product spaces. This significantly generalizes a result of Van den Broek. The proof is based on our main theorem, which describes the form of all bijective transformations on the set of all rank-one idempotents of a Banach space which preserve zero products in both direct...
full textLinear Orthogonality Preservers of Hilbert C∗-modules
We show in this paper that the module structure and the orthogonality structure of a Hilbert C∗-module determine its inner product structure. Let A be a C∗-algebra, and E and F be Hilbert A-modules. Assume Φ : E → F is an A-module map satisfying 〈Φ(x),Φ(y)〉A = 0 whenever 〈x, y〉A = 0. Then Φ is automatically bounded. In case Φ is bijective, E is isomorphic to F . More precisely, let JE be the cl...
full textOperators Reversing Orthogonality and Characterization of Inner Product Spaces
In this short paper we answer a question posed by Chmieliński in [Adv. Oper. Theory 1 (2016), no. 1, 8–14]. Namely, we prove that among normed spaces of dimension greater than two, only inner product spaces admit nonzero linear operators which reverse the Birkhoff orthogonality.
full textMy Resources
Journal title
volume 5 issue 20
pages 49- 56
publication date 2019-11-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023